Three‐step iterative weight function scheme with memory for solving nonlinear problems
نویسندگان
چکیده
In this manuscript, we present a parametric family of derivative-free three-step iterative methods with weight function for solving nonlinear equations. We study various ways introducing memory to in order increase the convergence without new functional evaluations. also performed numerical experiments compare from different points view.
منابع مشابه
A new iterative with memory class for solving nonlinear equations
In this work we develop a new optimal without memory class for approximating a simple root of a nonlinear equation. This class includes three parameters. Therefore, we try to derive some with memory methods so that the convergence order increases as high as possible. Some numerical examples are also presented.
متن کاملa new iterative with memory class for solving nonlinear equations
in this work we develop a new optimal without memory class for approximating a simple root of a nonlinear equation. this class includes three parameters. therefore, we try to derive some with memory methods so that the convergence order increases as high as possible. some numerical examples are also presented.
متن کاملA numerical scheme for solving nonlinear backward parabolic problems
In this paper a nonlinear backward parabolic problem in one dimensional space is considered. Using a suitable iterative algorithm, the problem is converted to a linear backward parabolic problem. For the corresponding problem, the backward finite differences method with suitable grid size is applied. It is shown that if the coefficients satisfy some special conditions, th...
متن کاملa numerical scheme for solving nonlinear backward parabolic problems
in this paper a nonlinear backward parabolic problem in one dimensional space is considered. using a suitable iterative algorithm, the problem is converted to a linear backward parabolic problem. for the corresponding problem, the backward finite differences method with suitable grid size is applied. it is shown that if the coefficients satisfy some special conditions, th...
متن کاملAn Iterative Scheme for Solving Nonlinear Equations with Monotone Operators
An iterative scheme for solving ill-posed nonlinear operator equations with monotone operators is introduced and studied in this paper. A discrete version of the Dynamical Systems Method (DSM) algorithm for stable solution of ill-posed operator equations with monotone operators is proposed and its convergence is proved. A discrepancy principle is proposed and justified. A priori and a posterior...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods in The Applied Sciences
سال: 2023
ISSN: ['1099-1476', '0170-4214']
DOI: https://doi.org/10.1002/mma.9521